The 17th International Conference on Environmental Ergonomics ICEE2017

November 12 – 18, 2017 Kobe, Japan

Editors: ICEE2017 Local Organising Committee

The 17th International Conference on Environmental Ergonomics ICEE2017

PROGRAMME SCHEDULE

November 12 – 18, 2017 Kobe, Japan

Editors: ICEE2017 Local Organising Committee The proceedings in this publication have been reviewed by at least one independent reviewer and have subsequently been revised by the author(s) before inclusion.

Copyright belongs to the authors. No part of this publication may be reproduced by any means without the prior permission of the copyright holder, and proper reference.

Environmental Ergonomics XVII / editors Local organising committee. International Society for Environmental Ergonomics.

PREFACE

It is a great pleasure to introduce the 17th International Conference on Environmental Ergonomics (ICEE) held in Kobe, Japan from November 12th to 18th 2017. This is the second time that the ICEE has been held in Japan, where previously it was held in Fukuoka in 2002. The host city of Kobe is a vibrant port city and hub for people, information and goods from around the world. Kobe's location nestled between the mountains and sea gives the city beautiful natural diversity and is convenient to visit other attractive cities such as Kyoto, Osaka, Nara, Himeji in Kansai. In addition, Kobe has a laid-back and open atmosphere, which can be enjoyed all throughout the year. The month of November should be especially beautiful for viewing the autumnal colors around the city and mountainside. We trust that you will have a fruitful and pleasant visit to Kobe and Kansai area in Japan.

We are pleased to announce that over 200 people have registered for the conference, coming from 27 countries. ICEE is a small, single session, family type meeting that always provides a great opportunity for researchers to come together and discuss relevant topics in our field of research. The conference attracts researchers throughout all stages of their research career and has been particularly keen on supporting the next generation. This year has been no exception as we have awarded 67 free student places. In addition we have created two Early Career Research Symposiums to continue our support post PhD graduation. We have three fantastic sessions from senior scientist, including a special symposium focused on Asian populations. The calibre of the research continues across a total of 91 oral presentations and 93 poster presentations. The International and Local Organizing Committee reviewed all papers.

In total 23 sponsors have supported ICEE2017, Kobe. We are very grateful for the support of all sponsors, with special thanks for the continued support from WL Gore & Associates for funding the presenting students. In addition, we are grateful to Experimental Physiology and The Physiological Society for their generous donation towards the best student oral and poster presentation prizes. We would like to take this opportunity to thank all participants and the ICEE Executive Committee for entrusting us with such a fantastic opportunity to organize ICEE2017. We warmly welcome you all and hope that you have a great time for science and social activities in ICEE2017, Kobe.

ICEE2017 Local Organising Committee

ICEE2017 Local Organising Committee

Narihiko Kondo (Kobe University) Yoshimitsu Inoue (Osaka International University) Takeshi Nishiyasu (Tsukuba University) Nicola Gerrett (Kobe University) Naoto Fujii (Tsukuba University) Tatsuro Amano (Niigata University) Dai Okushima (Kobe Design University)

ICEE2017 Conference Website: http://icee2017.h.kobe-u.ac.jp/ICEE2017 c/Welcome.html

An introduction to the history of the International Conference on Environmental Ergonomics: http://www.environmental-ergonomics.org/

Location: Ikuta Shrine Hall

1-2-1 Shimo Yamate Dori Chuou ku, Kobe 650-0011, Japan

3F

Floor map

ICEE 2017 Week Schedule

Date/Time	Sunday 12th November
16:00-18:00	Registration

Date/Time	Monday 13th November
7:30-8:30	Registration
8:30-8:50	Welcoming address: Prof Kondo
8:50-9:30	Keynote speaker: Prof Morimoto
9:30-10:20	Oral presentation 1: Temperature regulation 1 (x4)
10:20-11:00	Coffee break & poster presentations 1 (x20)
11:00-12:15	Oral presentation 2: Occupation (x6)
12:15-13:35	Lunch, Experimental Physiology announcement by Dr. Tipton
13:35-15:05	Symposium 1: Early Career researchers 1 : Heat loss response
15:05-15:45	Coffee break & poster presentations 1 (x20)
15:45-16:40	Oral presentation 3: Perception 1 (x3)
16:40-17:10	JSPS announcement
17:10-17:50	Meeting adjourned for the day. Announcements. Group Photo
18:00-20:00	Welcome reception

Date/Time	Tuesday 14th November
7:30-8:00	Registration
8:00-9:15	Oral presentation 4: Physiology and Exercise Physiology (x6)
9:15-9:55	Coffee break & poster presentations 2 (x20)
9:55-10:45	Oral presentation 5: Materials and design 1 (x4)
10:45-12:00	Oral presentation 6: Materials and design 2 (x6)
12:00-13:20	Lunch
13:20-15:20	Symposium 2: Aging in a Hotter World
15:20-16:10	Oral presentation 7: Temperature regulation 2 (x4)
16:10-16:50	Coffee break & poster presentations 2 (x20)
16:50-17:30	Oral presentation 8: Heat Exposure 1 (x3)
17:30-18:10	Oral presentation 9: Heat exposure and Adaptation (x3)
18:10-18:20	Meeting adjourned for the day. Announcements
18:45-late	Student party

Date/Time	Wednesday 15th November
7:30-8:00	Registration
8:00-9:15	Oral presentation 10: Exercise performance (x6)
9:15-9:45	Poster presentations 3 (x20)
9:45-10:35	Oral presentation 11: Fire fighters (x4)
10:35-11:15	Coffee break & poster presentations 3 (x20)
11:15-12:45	Symposium 3: Clothing assessment and Development
12:45-14:05	Lunch
14:05-14:15	Meeting adjourned for the day. Announcements

Date/Time	Thursday 16th November	
7:30-8:00	Registration	
8:00-9:05	Oral presentation 12: Perception 2 (x5)	
9:05-10:10	Oral presentation 13: Heat adaptation (x5)	
10:10-10:50	Coffee break & poster presentations 4 (x20)	
10:50-11:50	Oral presentation 14: Temperature regulation 3 (x5)	
11:50-13:10	Lunch	
13:10-14:40	Symposium 4: Thermoregulation in Asians	
14:40-15:20	Coffee break & poster presentations 4 (x20)	
15:20-16:25	Oral presentation 15: Modeling and design (x5)	
16:25-17:15	Oral presentation 16: Temperature regulation 4 (x4)	
17:15-17:25	Meeting adjourned for the day. Announcements	

Date/Time	Friday 17th November
7:30-8:00	Registration
8:00-8:50	Oral presentation 17: Temperature regulation 5 (x4)
8:50-9:55	Oral presentation 18: Sports Clothing (x5)
9:55-10:35	Coffee break & poster presentations 5 (x19)
10:35-11:15	Oral presentation 19: Heat exposure 2 (x3)
11:15-11:55	Oral presentation 20: Body morphology (x3)
12:00-13:20	Lunch
13:20-14:50	Symposium 5: Early Career researchers 2: Adaptation
14:50-15:30	Coffee break & poster presentations 5 (x19)
15:30-16:00	Closing ceremony and Awards
18:30-21:30	Conference Banquet

Date/Time	Saturday 18th November
0.00 12.00	Interesting Group Meeting for Environmental Ergonomics
9.00-12.00	(Kobe University)

ICEE2017 Abstracts			
Author (s = student)	Title	Abstract page	Board no
KEYNOTE Mon 08:50-09:30	Keynote	Abstract page	
Morimoto	Environmental Physiology in Japan -Past and present-	1	
ORAL Mon 09:30-10:20	Temperature regulation 1 Chair and co chair: Clare Eglin and Tze-Huan Lei	Abstrac	t page
Stewart	Internal and external cooling methods and their effect on body temperature and manual dexterity	2	
Castellani	The effects of separate and combined forearm and face heating on hand temperatures and dexterity during cold exposure	3	
Færevik	Rescue and survival in Arctic sea regions	4	ļ
Wakabayashi	Greater contribution of glycolytic metabolism during exercise in cold water with hypothermic skeletal muscle	5	
POSTER Mon 10:20-11:00	Poster session 1	Abstract page	Board no
Miyazawa (s)	Estimation method of air flow in microenvironment inside	c	
		0	1
Deng (s)	Effect of traits of microclimates in protective clothing on thermal protective performance: A review	7	1
Deng (s) Burke	Effect of traits of microclimates in protective clothing on thermal protective performance: A review Comparison of air gap behaviour at partial saturation using microclimate sensors with a sweating thermal manikin and guarded hotplate	7	1 2 3
Deng (s) Burke Song	Effect of traits of microclimates in protective clothing on thermal protective performance: A review Comparison of air gap behaviour at partial saturation using microclimate sensors with a sweating thermal manikin and guarded hotplate Modelling the effects of air gap size on human physiological and psychological responses in chemical protective clothing	7 7 8 9	1 2 3 4
Deng (s) Burke Song Yuan	Effect of traits of microclimates in protective clothing on thermal protective performance: A review Comparison of air gap behaviour at partial saturation using microclimate sensors with a sweating thermal manikin and guarded hotplate Modelling the effects of air gap size on human physiological and psychological responses in chemical protective clothing Assessment and improvement of thermal-physical properties on 3D printed bionic body armor	8 7 8 9 10	1 2 3 4 5
Deng (s) Burke Song Yuan Kwon	Effect of traits of microclimates in protective clothing on thermal protective performance: A review Comparison of air gap behaviour at partial saturation using microclimate sensors with a sweating thermal manikin and guarded hotplate Modelling the effects of air gap size on human physiological and psychological responses in chemical protective clothing Assessment and improvement of thermal-physical properties on 3D printed bionic body armor Relationships between yachting characteristics and the PPE usage features	6 7 8 9 10 11	1 2 3 4 5 6
Deng (s) Burke Song Yuan Kwon Takemura	Effect of traits of microclimates in protective clothing on thermal protective performance: A review Comparison of air gap behaviour at partial saturation using microclimate sensors with a sweating thermal manikin and guarded hotplate Modelling the effects of air gap size on human physiological and psychological responses in chemical protective clothing Assessment and improvement of thermal-physical properties on 3D printed bionic body armor Relationships between yachting characteristics and the PPE usage features Immediate effects of shoes for the treatment inducing a slightly high heel and the special bottom structure during challenging walking gaits	0 7 8 9 10 11 12	1 2 3 4 5 6 7
Deng (s) Burke Song Yuan Kwon Takemura Troynikov	Effect of traits of microclimates in protective clothing on thermal protective performance: A review Comparison of air gap behaviour at partial saturation using microclimate sensors with a sweating thermal manikin and guarded hotplate Modelling the effects of air gap size on human physiological and psychological responses in chemical protective clothing Assessment and improvement of thermal-physical properties on 3D printed bionic body armor Relationships between yachting characteristics and the PPE usage features Immediate effects of shoes for the treatment inducing a slightly high heel and the special bottom structure during challenging walking gaits Thermal and vapour resistance of different triathlon suits	0 7 8 9 10 11 12 13	1 2 3 4 5 6 7 8

Wang	The development of the specific requirements of energy- saving shirt in Taiwan	15	10
Barwood	Repeated L-Menthol application to the skin improves thermal perception and enhances cycling performance in the heat	16	11
Fournet	Children thermal comfort during physical activity: how to bridge the gap ?	17	12
Curran	Arteriovenous anastomoses (AVAs) modeling study	18	13
Gkiata (s)	Effects of cryotherapy on diabetic peripheral neuropathy symptoms: a case study	19	14
Eglin	Comparison of endothelial function and sensory thermal thresholds in cold sensitive and control individuals	20	15
Kawai (s)	Effects of odor stimulation with essential oil on muscle sympathetic nerves activity in humans	21	16
Tipton	Changes in lung function during exercise are independently mediated by increases in deep body temperature	22	17
Hayashi	Effect of food intake on the respiratory response to CO_2	23	18
limura (s)	Effect of pedal cadence on the calf venous compliance after moderate cycling exercise	24	19
OPAL	Occupation		
Mon 11:00-12:15	Chair and co chair: John Castellani and Braid MacRae	Abstra	ct page
Rissanen	Performance of respiratory protective equipment in the cold environment	2	5
	Heat shield project: The effect of a summer heat wave on the		
Ciuha	productivity in an automobile-parts manufacturing plant	2	6
Ciuha Walker	productivity in an automobile-parts manufacturing plant Thermal strain during job-related tasks conducted by the National Ambulance Resilience Unit	2	6 7
Ciuha Walker Looney	productivity in an automobile-parts manufacturing plant Thermal strain during job-related tasks conducted by the National Ambulance Resilience Unit Energy expenditure estimation during military load carriage over complex terrain	2	6 7 8
Ciuha Walker Looney Koyama	productivity in an automobile-parts manufacturing plant Thermal strain during job-related tasks conducted by the National Ambulance Resilience Unit Energy expenditure estimation during military load carriage over complex terrain Evaluations of the daytime light environment adapted to the type of working task; Comparison between blue excitation and purple excitation white LEDs	2 2 2 2 2 2 2	6 7 8 9
Ciuha Walker Looney Koyama Sandsund	productivity in an automobile-parts manufacturing plant Thermal strain during job-related tasks conducted by the National Ambulance Resilience Unit Energy expenditure estimation during military load carriage over complex terrain Evaluations of the daytime light environment adapted to the type of working task; Comparison between blue excitation and purple excitation white LEDs Musculoskeletal symptoms in the Norwegian fishing fleet. A register data and self-reported questionnaires study	2 2 2 3	6 7 8 9 0
Ciuha Walker Looney Koyama Sandsund	productivity in an automobile-parts manufacturing plant Thermal strain during job-related tasks conducted by the National Ambulance Resilience Unit Energy expenditure estimation during military load carriage over complex terrain Evaluations of the daytime light environment adapted to the type of working task; Comparison between blue excitation and purple excitation white LEDs Musculoskeletal symptoms in the Norwegian fishing fleet. A register data and self-reported questionnaires study Early career researcher: heat loss	2	6 7 8 9 0
Ciuha Walker Looney Koyama Sandsund Sandsund SYMPOSIUM Mon 13:35-15:05	productivity in an automobile-parts manufacturing plant Thermal strain during job-related tasks conducted by the National Ambulance Resilience Unit Energy expenditure estimation during military load carriage over complex terrain Evaluations of the daytime light environment adapted to the type of working task; Comparison between blue excitation and purple excitation white LEDs Musculoskeletal symptoms in the Norwegian fishing fleet. A register data and self-reported questionnaires study Early career researcher: heat loss response	2 2 2 2 3 Abstra	6 7 8 9 0 ct page
Ciuha Walker Looney Koyama Sandsund Sandsund Mon 13:35-15:05	productivity in an automobile-parts manufacturing plant Thermal strain during job-related tasks conducted by the National Ambulance Resilience Unit Energy expenditure estimation during military load carriage over complex terrain Evaluations of the daytime light environment adapted to the type of working task; Comparison between blue excitation and purple excitation white LEDs Musculoskeletal symptoms in the Norwegian fishing fleet. A register data and self-reported questionnaires study Early career researcher: heat loss response Chair and co chair: Naoto Fujii and Nicola Gerrett	2 2 2 2 3 Abstra	6 7 8 9 0 ct page

Gerrett	Sweat glands ion realisoration	3	3	
Genett		5	5	
Notley	Heat strain over consecutive work shifts	3	4	
Lucas	Intervention to reduce heat strain and kidney damage among sugarcane workers in El Salvador		5	
ORAL Mon 15:45-16:40	Perception 1 Chair and co chair: Igor Mekjavic and Lauren Penko	Abstra	ct page	
Takamatsu	Physiological evaluations and development for comfort cabin		6	
Havenith	Ethnic differences in preferred air flow temperature in a vehicle environment	3	7	
Fojtlin (s)	An innovative HVAC control system: Comparison of the system outputs to comfort votes	3	9	
Ohno	Does the vertical position of the axis of whole-body rolling affect discomfort in seated persons?	4	0	
ORAL Tues 08:00-09:15	Physiology and exercise physiology Chair and co chair: Matt White and Ash Willmott	Abstra	ct page	
Tipton	The human ventilatory responses to different stresses	4	41	
Dobashi (s)	Separate effects of voluntary hyperventilation and resultant hypocapnia on metabolic and cardiovascular responses during and following supramaximal exercise	4	2	
Matsutake (s)	Combined effects of cold pressor test and apnea on cardiovascular responses during dynamic two-legged knee extension exercise		3	
Cao (s)	Expiratory flow limitation under moderate hypobaric hypoxia does not influence ventilation, oxygen uptake, and operating lung volumes during incremental running in endurance runners	4	4	
Bröde	Q ₁₀ effect and thermal cardiac reactivity related to the interrelation between heart rate and oxygen consumption under heat stress	45		
Cheung	Oxygen availability effects on exercise performance and tissue oxygenation during mild hypothermia	² 46		
POSTER Tue 09:15-09:55	Poster session 2	Abstract page	Board no	
Kato (s)	Experimental study on the practical effect of solar radiation on a clothed human body by using a thermal manikin	47	1	
Song	Effects of wind and air gap on the thermal resistance of chemical protective clothing fabrics	48	2	

ORAL Tue 09:55-10:45	Materials and design 1 Chair and co chair: Edith Classen and Adam Potter	Abstra	ct page
Lasisi	Thermoregulatory properties of hair: is human hair morphology adaptive?	66	20
Bratadewi (s)	Effects of cold young coconut water ingestion for precooling on physiological responses during exercise in hot and humid environment	65	19
West (s)	Shoe microclimate: an objective and subjective evaluation	64	18
Stadnyk (s)	Functional and physical adaptations to resistance training with external muscle heating	63	17
Oue	Effect of short-term endurance interval training on venous compliance in humans	62	16
Coull (s)	Thermal sensitivity to a warm and a cold stimulus: An age comparison	61	15
Otani	Effects of variations in air velocity on endurance exercise capacity and thermoregulation in a hot environment	60	14
Kim (s)	Self-identified thermal comfort zone and perceived climate changes: a questionnaire study in temperate, tropical and cold climates	59	13
Watanabe (s)	Study on psychological effects by reproduction of ambient music and sound effects	58	12
Ruan (s)	Effects of bathing on psychophysiological responses in the elderly and the young males	57	11
Roh (s)	Regional differences in skin hydration on the hand by medical glove type	56	10
Chen	A novel high elastic fabric with comfortable properties developed for burn survivors	55	9
Wang	Body-mapping nano-porous polyethylene (PE) clothing could prompt radiative body heat dissipation in moderate warm indoor environments	54	8
Su (s)	Performance analysis of membrane fabric used for thermal protective clothing in steam and radiant hazards	53	7
Bernard	Exertional heat illness and acute injury related to WBGT during deepwater horizon clean-up	52	6
Eckels	Determining temperature ratings for children's sleeping bags	51	5
Wang (s)	The application of 3D scanning technology in the assessment of protective clothing and its validity verification	50	4
Hunt	Agreement between the measured and estimated effects of wind-speed on the heat exchange properties of military protective clothing	49	3

Xu	Effect of material thermal properties on thermal performance of multi-layer personal protective ensembles	67
Watson (s)	Investigation of low risk category industrial workwear materials for use in hot environments	68
Satsumoto	Evaluation of CO_2 permeability for water vapour permeable waterproof clothes	69
Veselá	Analysis of local clothing area factors of typical office clothing items and their correlation to the ease allowance at various body landmarks	70
ORAL Tue 10:45-12:00	Materials and design 2 Chair and co chair: Emiel DenHartog and Meng Deng	Abstract page
Lu	The development of smart heating gloves and performance evaluation	71
Jussila	Heated gloves for rewarming and sustaining hand temperatures at cold work	72
Troynikov	Hand movement, skin deformation behaviour and glove-skin interfacial pressure: impact on therapeutic glove design	73
Udayraj (s)	A numerical study to analyse the effect of dynamic and heterogeneous microclimates in protective clothing on skin burn injury	74
Watson (s)	Evaluating the effect of transient sleeping environments on athletic sleep quality using thermal manikins	75
Classen	Determination of the insulation of baby sleeping bags- material test versus manikin test	76
SYMPOSIUM Tue 13:20-15:20	Aging in a hotter world Chair: Larry Kenney	Abstract page
Alexander	The aged human cutaneous vasculature: altered mechanisms of vasodilation, emerging knowledge, and remaining questions	78
Crandall	Aging and integrated cardiovascular responses to heat stress	79
Inoue	Aging, sweating, and sweat gland function	80
Kenny	Environmental factors impacting responses of older individuals to heat	81
ORAL Tues 15:20-16:10	Temperature regulation 2 Chair and co chair: Joseph Costello and Alexandros Sotiridis	Abstract page
Barwood	Acute anxiety predicts components of the cold shock response on cold water immersion before and after repeated immersion: implications for control of ventilation	82

Fujimoto (s)	Low intensity exercise delays shivering response to core cooling	83
Lei (s)	Behavioural and autonomic thermoregulation during exercise in differing thermal profiles of heat matched for vapour pressure	84
Cotter	The body core is far more thermosensitive than the skin in driving behavioural thermoregulation during swimming	85
ORAL Tue 16:50-17:30	Heat Exposure 1	Abstract page
	Evaluation of commercial cooling systems to minimise	
Maley	thermal strain while wearing chemical-biological protective clothing	86
Lucas	Validation of core body temperature estimation from heart rate in sugarcane harvesters	87
Waldock (s)	aldock (s) Physiological and perceptual responses in the elderly to simulated daily living activities in UK summer climatic conditions	
ORAL Tue 17:30-18:10	Heat exposure and adaptation Chair and co chair: Takeshi Nishiyasu and Rachel Burke	Abstract page
Watkins (s)	A new occupational heat tolerance test	89
Willmott (s)	The efficacy of twice daily long-term heat acclimation on heat acclimation state, immune function and exercise tolerance	90
Lee	Effects of 28-day cold and heat cross exposure on thermoregulatory and behavioral responses in mice	92
ORAL Wed 08:00-09:15	Exercise performance Chair and co chair: Chris Tyler and Nathalie Kirby	Abstract page
Osborne (s)	The effects of cycling in the heat on gastrointestinal inflammation and neuromuscular performance	93
Sotiridis (s)		
	Hypoxic acclimatization does not improve exercise performance and thermoregulatory responses in the heat: no evidence of cross-tolerance/adaptation	94
Okuyama (s)	Hypoxic acclimatization does not improve exercise performance and thermoregulatory responses in the heat: no evidence of cross-tolerance/adaptation Thermal and cardiorespiratory responses and exercise performance in the heat during high intensity intermittent exercise that mimics rugby game	94 95
Okuyama (s) Levels	Hypoxic acclimatization does not improve exercise performance and thermoregulatory responses in the heat: no evidence of cross-tolerance/adaptation Thermal and cardiorespiratory responses and exercise performance in the heat during high intensity intermittent exercise that mimics rugby game The effects of heat exposure on the final sprint during a 20- km cycling time trial	94 95 96

Ang	Effects of training in cool vs. warm environment on subsequent aerobic performance in a warm and humid condition		98	
POSTER	Destan seedien 2	Abstract	Board	
Wed 09:15-09:45	Poster session 3	page	no	
Wu	Heat stress evaluation of miners in hot underground coal mines using an improved predicted heat strain model and an improved thermophysiological model	99	1	
DenHartog	Development and validation of bench-level and manikin test methods to predict heat related comfort properties of mattresses	100	2	
Hirata	Fast computation of temperature and water loss in human models for simultaneous exposure to ambient heat and solar radiation	101	3	
Potter (s)	How much of a difference in evaporative potential is important?	102	4	
Tsoutsoubi (s)	Influence of thermal balance on reactive hyperaemia	103	5	
Amorim (s)	Amorim (s) Incidence of heat waves in Cyprus and its association with mortality		6	
Kim (s)	Kim (s) Effects of dual-functional vest with body cooling and drinking water supply on the alleviation of heat strain		7	
Sumisato (s)	Sumisato (s) Observation and questionnaire on the relationship between the thermal index ETVO and behavior of people in Kyoto		8	
loannou (s)	nou (s) Physical demands and hydration status of grape-picking workers in Europe		9	
Ozaki	aki Conductive heat loss with aluminum sheet in wet condition		10	
Horiuchi	Impact of combined cool and hypoxic exposures on energy cost during walking in healthy adults		11	
Thake	Shake-Spear 17: Normoxic and hypoxic peak exercise responses before and after an Antarctic traverse		12	
Ohtaka	Control strategies for accurate force generation and relaxation in isometric contraction of lower limb		13	
Gleadall-Siddall (s)	Gleadall-Siddall Reliability of oxidative stress parameters and repeated 16.1 (s) km time trial performance		14	
Cheung	The effects of local muscle cooling on motor unit firing properties		15	
Fukuba	Dissociated dynamics of brachial artery and forearm skin blood flows during sinusoidal leg cycling exercise		16	
Massey	Size does matter! Conductive toe skin cooling in matched male and female volunteers	115	17	
Ichinose Reduction of venous return abolishes muscle metaboreflex- mediated rise in cardiac output in exercising humans		116	18	

Tsuzuki	Thermal environment and sleep in wintershelter-analogue settings	117	19
Yurkevicius	The effects of facial heating during cold exposure on hand/finger temperature, dexterity, and strength	118	20
ORAL Wed 09:45-10:35	Firefighters Chair and co chair: Yoram Epstein and Leonidas Ioannou	Abstra	ct page
Xu (s)	Influence of sudden ambient temperature change on thermal response of human body dressed in firefighting clothing	11	.9
Hunt	Body core temperature remains elevated following recovery from firefighting activities in the Australian Defence Force	12	20
Macrae	Core body temperature dynamics during fire fighter heat exposure training	12	21
Oksa	Muscular fatigue and recovery after a heavy work bout in the heat: comparison of four recovery interventions on muscle structure and mechanical properties in firefighters	12	22
SYMDOSIUM	Clothing assessment and		
Wed 11:15-12:45	development	Abstract page	
Wang	Chair and co chair: George Havenith and Faming Wang Critical assessment of different manikin control options		24
Fournet	Using Infra-Red analysis for sports clothing development	125	
Raccuglia	Iglia Wetness sensation during rest and exercise and the interaction with textiles: how can you feel it?		26
Thur 08:00-09:05	Perception 2 Chair and co chair: Takako Fukazawa and Anna West		ct page
Penko (s)	Surface heat flux and thermal comfort in women during rest and exercise in a cold environment	12	27
Mekjavic	Perception of thermal comfort during skin cooling and heating		.8
House	Comparison of constant vs. intermittent forced-air ventilation under body armour and the impact on heat strain, thermal perception and thermal comfort		9
DenHartog	Effects of task and motivation on sensations of discomfort and task performance	13	60
	Comparison of thermal environment, thermal sensation and	13	01

ORAL Thur 09:05-10:10	Heat adaptation Chair and co chair: Stephen Chueng and Nicole Coull	Abstra	ct page
Garrett	Effectiveness of short-term heat acclimation on intermittent exercise in the heat with moderately-trained females controlling for menstrual cycle phase	132	
Kirby (s)	Heat acclimation for female endurance performance in hot and normothermic conditions	13	33
Poirier (s)	Does heat acclimation improve whole-body heat loss in older men?	13	34
Stanley	Divergent physiological adaptations from short-term heat acclimation in dry vs humid conditions at equivalent heat index: no performance change in temperate conditions	13	35
Garrett	Effectiveness of short-term heat acclimation on intermittent exercise in the heat with moderately-trained males	13	36
POSTER	Destance	Abstract	Board
Thur 10:10-10:50	Poster session 4	page	no
Bae (s)	 Classification of manual dexterity and mobility for firefighter's protective gloves using Don-doff, ASTM dexterity, Minnesota dexterity, Bennett hand tool and ASTM torque tests 		1
Kim (s)	Maximum heart rate as a correction factor in predicting firefighters' rectal temperature using heart rate		2
Kim	Firefighter's personal protective equipment and burn injuries: an empirical study in Korea		3
Watkins (s)	Fire service instructors' working practices: A United Kingdom Survey		4
Lu	The impact of shape memory alloy size on the protective performance of fabrics used in fire-fighter's protective clothing		5
Tokizawa	kizawa Effects of combined cooling applications before and during exercise on heat strain while wearing protective clothings		6
Potter (s)	er (s) Effects of layering on thermal insulation and vapor permeability		7
Miyazawa (s)	Miyazawa (s) Airflow in microenvironment under sportswear generated by running motion		8
Moran	Physiological and logistic considerations in the integration of females in the IDF combat units		9
Tyler	The effect of high-intensity short-term heat acclimation on exercise capacity in the heat in trained cyclists		10
Park	Effects of 14-day acclimation to cold and heat on cold tolerance in males	147	11
Ueda	Sex differences in the development of peripheral sudomotor sensitivity to acetylcholine	148	12

Vliora (s)	Seasonal changes in environmental temperature increase UCP1 in subcutaneous white adipocytes.	149 13		
Ohnishi	The relationship between body water content measured by bioelectric impedance analysis and whole body sweat loss and body temperature in response to heat exposure	150	14	
Jung (s)	Body regional heat pain thresholds in Korean young males by methods of limit and level	151	15	
Griggs (s)	Thermal perceptions of individuals with a spinal cord injury	152	16	
Maley	Role of cyclooxygenase in the vascular responses to extremity cooling in Caucasian and African descent males	153	17	
Best (s)	Subjective preferences of varying menthol mouthwash concentrations	154	18	
Borg (s)	The effect of ambient temperature deception on perceived exertion and physiological variables during fixed-intensity cycling in the heat	155	19	
ORAL	Temperature regulation 3	Abstra		
Thur 10:50-11:50	Chair and co chair: Nigel Taylor and Kohei Dobashi	ADSUA	Abstract page	
Coull (s)	Regional sweat distribution in young and older individuals	156		
Meade (s)	Hypohydration impairs whole-body evaporative heat loss during exercise in the heat	157		
West (s)	Sweat distribution and perceived wetness across the human foot	158		
Massey	No sweat boys! Think X-Linked hypohidrotic ectodermal dysplasia	159		
Che Muhamed	Thermoregulatory responses during eccentric downhill running exercise in trained male.	160		
SYMPOSIUM Thu 13:10-14:40	Thermoregulation in Asians Chair and co chair: Jason Lee and Joo-Young Lee	Abstra	ct page	
Lee	Cold adaptation, aging, and Korean women divers (haenyeos)	162		
Wakayabashi	Multiple organs coordination for cold induced thermogenesis in Japanese males	163		
Wijayanto	Thermoregulatory responses during exercise in hot-dry and warm-humid environment in Indonesian males	vercise in hot-dry and 164 an males		
Che Muhamed	Eccrine sweat gland function of tropical natives during exercise in hot-humid and hot-dry environments	165		

ORAL Thur 15:20-16:25	Modeling and design Chair and co chair: Chuansi Gao and Margherita Raccuglia	Abstract page	
Kuklane	Clothing design parameters that affect estimation of clothing insulation change due to posture and motion	166	
Bogerd	Prediction of thermopysiological responses to local skin cooling using the Fiala thermophysiological model	167	
Welles	Human thermoregulatory model based estimation of metabolic rate from core body temperature	168	
Hepokoski	Analysis of thermal comfort and draft discomfort in a transient and asymmetric environment	169	
MacRae (s)	Skin temperature measurement using contact thermometry: A systematic review of validity and comparability between setups	170	
ORAL Thur 16:25-17:15	Temperature regulation 4 Chair and co chair: Andrew Garrett and Martin Poirier	Abstract page	
Skinner (s)	r (s) Effect of passive heat stress on cerebral blood flow responsiveness across the menstrual cycle and between the sexes		
Malcolm (s)	The influence of high intensity intermittent exercise in the heat on neuromuscular and cognitive function	172	
Low	Differential regulation of body and brain temperature during hyperthermia in humans	173	
Cooper	The influence of passive heat stress on cognitive function	174	
ORAL Fri 08:00-08:50	Temperature regulation 5 Chair and co chair: Mike Tipton and Tomomi Fujimoto	Abstract page	
Fujii	K _v , K _{ATP} , and K _{Ca} channels are involved in cutaneous reactive hyperemia but not venous occlusion induced cutaneous vasoconstriction in young adults	175	
Eglin	The effect of acute beetroot juice supplementation on the responses to local cooling and endothelial function in cold sensitive individuals	176	
Maeda	Relationship between endothelium-dependent vasodilation and cold-induced vasodilation	177	
Burke (s)	Effect of nitrate supplementation on vascular function, oxidative stress and a 16.1 km time trial in a normoxic environment with a younger active population.	178	
ORAL Fri 08:50-09:55	Sports clotning Chair and co chair: Kalev Kuklane and Siyeon Kim	Abstract page	

Qi (s)	Effect of sportswear cover area on thermoregulation during running		'9	
Du (s)	The influence of sports bra on thermoregulation during running in heat		180	
Lin	Validation of body-mapping sports shirts designs on thermal physiological responses and comfort in warm and humid environment	181		
Gao	Thermophysiological responses of exercising in body mapping T-shirts in a warm and humid environment: subject test and predicted heat strain	182		
Raccuglia (s)	T-shirt sweat absorption mapping	18	183	
POSTER Fri 09:55-10:35	Poster session 5	Abstract page	Board no	
loannou (s)	Time-motion analyses as a novel approach for evaluating the impact of environmental heat exposure on labor loss in agriculture workers		1	
Saito	How much could a mist fan decrease WBGT values at an extreme hot outdoor worksite in summer ?		2	
Yokoe	Yokoe Consideration of air-conditioning operating method which can save the energy consumption and awakening of occupants.		3	
Takakura	Can human biologically adapt to the forthcoming climateTakakurachange? From the viewpoint of workable hours under thermal stresses		4	
Ueno	Ueno Regional and age related incidences of heat disorder across Japan		5	
Takeda	Takeda Whole body and skin thermal sensation are not improved with regular exercise in elderly men		6	
Fišer	Fišer Car cabin thermal comfort measurement under real traffic conditions		7	
Fukazawa	Relevance between thermal comfort limit by metabolism in Japanese young female and male		8	
Kakitsuba	Diurnal variation in the core interthreshold zone and its relation to cutaneous sensation threshold zone		9	
Toma	Estimation of thermal sensation based on human's physiological parameters in indoor environment	193	10	
Hashiguchi	Schiguchi Cutaneous thermal thresholds in elderly people with lifestyle- related disease		11	
Wiggen Individual variations in perceived thermal sensation and skin Wiggen temperature of fingers at different work intensitties during cold expsure cold expsure		195	12	

Walker	Reliability and face validity of a protocol for defining the inflection point in deep body temperature during cycling exercise in a high and low humidity	196	13
Wakabayashi	Neuromuscular function during knee extension exercise following cool-water immersion	197	14
ORAL Fri 10:35-11:15	Heat Exposure 2 Chair and co chair: lim House and Bob Meade	Abstra	ct page
Weller	Thermal strain during prolonged low intensity exercise wearing an immersion protection aircrew equipment assembly (AEA) in air temperatures of 10, 20 and 30 °C	19	98
Sakoi	Heat disorder risk evaluation by a new effective wet bub globe temperature index	19	99
Bernard	Revisiting the occupational exposure limit based on wet bulb globe temperature	200	
ORAL Fri 11:15-11:55	Body morphology Chair and co chair: Bun Tsuii and Katy Griggs	Abstra	ct page
	Body morphology appears not to influence thermoeffector function during uncompensable heat adaptation		
Notley	Body morphology appears not to influence thermoeffector function during uncompensable heat adaptation	20	01
Notley Fournet	Body morphology appears not to influence thermoeffector function during uncompensable heat adaptation Hand rewarming following exercise in cold air is dependent on body fatness	20)1
Notley Fournet Costello	Body morphology appears not to influence thermoeffector function during uncompensable heat adaptation Hand rewarming following exercise in cold air is dependent on body fatness Individualising the exposure of -110°C whole body cryotherapy: The effects of sex and body composition	20 20 20)1)2)3
Notley Fournet Costello	Body morphology appears not to influence thermoeffector function during uncompensable heat adaptation Hand rewarming following exercise in cold air is dependent on body fatness Individualising the exposure of –110°C whole body cryotherapy: The effects of sex and body composition	20)1)2)3
Notley Fournet Costello SYMPOSIUM Fri 13:20-14:50	Body morphology appears not to influence thermoeffector function during uncompensable heat adaptation Hand rewarming following exercise in cold air is dependent on body fatness Individualising the exposure of -110°C whole body cryotherapy: The effects of sex and body composition Early career researcher: Adaptations Chair and co chair: Tatsuro Amano and Naoto Fuiji	20 20 20 Abstrac	01 02 03 ct page
Notley Fournet Costello SYMPOSIUM Fri 13:20-14:50 Barwood	Body morphology appears not to influence thermoeffector function during uncompensable heat adaptation Hand rewarming following exercise in cold air is dependent on body fatness Individualising the exposure of -110°C whole body cryotherapy: The effects of sex and body composition Early career researcher: Adaptations Chair and co chair: Tatsuro Amano and Naoto Fujii Habituation of the cold shock response: novel drivers of the habituation process in an integrated model of cold shock	20 20 20 Abstrac	01 02 03 ct page 05
Notley Fournet Costello SYMPOSIUM Fri 13:20-14:50 Barwood Faulkner	Body morphology appears not to influence thermoeffector function during uncompensable heat adaptation Hand rewarming following exercise in cold air is dependent on body fatness Individualising the exposure of -110°C whole body cryotherapy: The effects of sex and body composition Early career researcher: Adaptations Chair and co chair: Tatsuro Amano and Naoto Fujii Habituation of the cold shock response: novel drivers of the habituation process in an integrated model of cold shock Thermal Therapy in the management and treatment of chronic disease	20 20 20 Abstrac 20 20	01 02 03 ct page 05 06

Sponsors (no particular order)

The Graduate School of Human Development and Environment at Kobe University and Kobe Active Aging Research Hub http://www.h.kobe-u.ac.jp/en/node/1023 https://www.h.kobe-u.ac.jp/en/node/3710

Osaka International University

The Uehara Memorial Foundation

Kobe Convention & Visitors Association

Journal of Physiological Anthropology

W.L. Gore and Associates

Thermetrics (USA)

Fuji Medical Science Co. Ltd.

Nivea KAO

Honda Research Institute Japan

Takei Scientific Instruments Co. Ltd.

MINATO MEDICAL SCIENCE CO., LTD.

Zero C Seven

MIZUNO Corporation

Otsuka Pharmaceutial Co., Ltd

Otsuka Pharmaceutical Factory

NAP Publishing

Nissin Sangyo

ARCOSYSTEM Inc.

Kyokko Bussan Co., Ltd

Espec

ROMIX CS Co.Ltd

http://www.oiu.ac.jp/en/

http://www.ueharazaidan.or.jp/

http://www.kobe-convention.jp/english/

<u>https://jphysiolanthropol.biomedcentral.co</u> <u>m/</u>

https://www.gore.com/

http://www.thermetrics.com/

https://www.fujiika.com/english/

https://www.nivea.co.jp/

http://www.jp.honda-ri.com/english/

http://www.takei-si.co.jp/en/index.html

http://www.minato-med.co.jp/en/

http://0c7.co.jp/

http://corp.mizuno.com/en/

https://www.otsuka.co.jp/en/index.php

http://www.otsukakj.jp/en/

http://www.nap-ltd.co.jp/

http://www.nissin-san.co.jp/

http://arcosystem.co.jp/

http://www.kykb.jp/service_top.html

https://www.espec.co.jp/english/index.html

http://www.romixcs.jp/index.html

当社は人工環境制御室・Human Calorimeterのメーカーとして高精度の装置を開発して参りました。 時代のニーズに対応する最新の装置をご提案いたします。

新時代 高解析・高分解能 エネルギー代謝測定装置 特許取得

FUJI ヒューマンカロリーメーター

技術開発センター 〒277-0026 千葉県柏市大塚町4-14 Tel: 04-7160-2641 Fax: 04-7160-2644 http://www.fujiika.com info@fujiika.com

るいているのはのとだけではありません。 必要な水分とイオンが失われて、カラダ全体が渇いているのです。 ポカリスエットは、体内の水分に近いイオンバランス。 カラダに必要な水分と電解質をすばやくとり戻せます。 カラダのことを考えれば、渇きにはポカリスエット。

イオンサプライ ポカリスエット **POCARI SWEAT** 製品に関するお問い合わせ先:大塚製業お客様相談室 0120-550708 http://www.otsuka.co.jp/poc/

「こんなこと実現するの?」をご相談してください!

より良い製品をお客様に提供するため、TAKEIは常に新しい製品の開発に取り組んでいます。その中には 研究者のご協力による、産学連携から生まれた製品も多く含まれております。 また、研究者のニーズに沿った特注製品も多く手掛けさせていただいており、それらの一部を紹介させ ていただきました。既製品ではご満足いただけない場合は、ぜひTAKEIに「こんなものは出来ないの?」 とお声をかけてみてください。

産学連携による特注品・開発品

脚伸展運動装置

バイクの負荷を利用して膝の伸展・屈曲運動を行う装置 です。

クランク機構を利用して、装置のペダル部とバイクの クランク部を接続しています。

シートの背もたれ角度および座面の前後位置は段階的 に変えることができます。

		仕 様
寸	法	約550(W) × 220(D) × 1,600(H)mm
質	量	約100kg(バイクは除く)

受注先:神戸芸術工科大学 古賀先生

エルゴメーター用実験装置

各種バイクを様々な姿勢で漕ぐための架台およびシー トです。

架台は電動リフトによって昇降が可能で、シートの背 もたれ角度および座面の前後位置は段階的に変えるこ とができます。

位 様			
寸	法	約570(W)×1,925(D)×1,330(H)mm	
質	量	エルゴ側 : 約75kg	
		椅 子 側:約45kg	

受注先:神戸大学 近藤先生

小学的可能性を科学する 竹并機器互業状式會社 http://www.takei-si.co.jp							
●仙台支店	〒984-0051	仙台市若林区新寺1-7-21(新寺KSビル7F)	TEL. 022 (291) 2765	FAX. 022 (291) 6364			
●新潟支店	〒956-0113	新潟県新潟市秋葉区矢代田619	TEL. 0250 (38) 4132	FAX. 0250 (61) 1211			
●東京支店	〒142-0064	東京都品川区旗の台1-6-18	TEL. 03 (3786) 4111	FAX. 03 (3787) 8673			
●名古屋支店	〒460-0008	名古屋市中区栄5-26-39(GS栄ビル4F)	TEL. 052 (264) 9201	FAX. 052 (263) 9345			
●大阪支店	〒532-0011	大阪市淀川区西中島6-7-8(大昭ビル7F)	TEL. 06 (6304) 6015	FAX. 06 (6304) 1538			
●福岡支店	〒812-0013	福岡市博多区博多駅東1-1-33(はかた近代ビル7F)	TEL. 092 (411) 1430	FAX. 092 (475) 3899			
●YG営業部	〒956-0113	新潟県新潟市秋葉区矢代田619	TEL. 0120 (383) 245	FAX. 0120 (383) 248			
●貿 易 部	〒956-0113	新潟県新潟市秋葉区矢代田619	TEL. 0250 (38) 4132	FAX. 0250 (61) 1211			
●商社営業部	〒956-0113	新潟県新潟市秋葉区矢代田619	TEL. 0250 (38) 4132	FAX. 0250 (61) 1211			
●本 社	〒956-0113	新潟県新潟市秋葉区矢代田619	TEL. 0250 (38) 4131	FAX. 0250 (38) 4799			

The first cerebral oxygenation monitor for clinical use by "Time Resolved Spectroscopy"

High quantitativity, High reproducibility realized by "Time Resolved Spectroscopy"

HHb Deoxygenated Hemoglobin Concentration

tHb Total Hemoglobin Concentration

StO₂ Oxygen Saturation of Hemoglobin

this to the second seco

HAMAMATSU PHOTONICS K.K., Systems Division PHOTON IS OUR BUSINESS HAMAMATSU PHOTONICS K.K., Systems Division www.hamamatsu.com / TEL: (053)431-0143 / E-Mail: sales@sys.hpk.co.jp

やさしさで、医療を科学する・・・ N AT

呼吸代謝諸量の正確なデータを提供します

心臓リハビリテーション・呼吸リハビリテーション 運動負荷量の決定のために

心肺運動負荷試験(CPX)を行うことにより 各個人に合った運動負荷量を求めることができます。

栄養管理 投与エネルギーの決定のために

呼気ガス分析による間接熱量測定法により 実測で求めることが出来ます。

スポーツ領域

最大酸素摂取量の計測のために

運動生理学分野での最大負荷までの代謝測定が可能です。

管理医療機器 特定保守管理医療機器 認証番号:219AGBZX00095000

*写真は【AE-310SRDB】AE-310Sシステムと エルゴメータとのオンラインシステム例

URL http://www.minato-med.co.jp/

ミナト医科学株式会社 本 社/〒532-0025 大阪府大阪市淀川区新北野3丁目13番11号 TEL 06(6303)7161 FAX 06(6303)9765 営業所/札幌・仙台・埼玉・千葉・東京・多摩・横浜・新潟・金沢・静岡・名古屋・京都・南大阪・大阪・神戸・高松・広島・北九州・福岡・鹿児島

生体ガス分析システム **Respiratory Gas Analysis System**

Mass spectrometry system [ARCO2000-MET Series]

∼Measurement of Basal Metabolism, VO2max, AT, Trace Gases∼

It is possible to construct a highly precise and multifunctional system that makes use of the high-speed response performance unique to mass spectrometers and the simultaneous continuous analysis function of up to 8 kinds of gases. It is possible to correspond to human, animals, microorganisms, cells, plants.

Portable Gas Analyzer [AR-10 O2郎]

¹³CO₂, ¹²CO₂

¹³C-Nutrients+O₂→¹³CO₂+H₂O

Douglas Bag

Hood

¹³CO₂/¹²CO₂ Stable Isotope Measurement

In our mass spectrometry system, we can measure ¹³ CO₂ which is a burned substance by administration of various ¹³ C-labeled compounds. Simultaneous continuous analysis with energy metabolism factors such as VO 2, VCO 2, RQ and so on is possible at the same time as $13 \text{ CO}_2/12 \text{ CO}_2$ analysis which can grasp the combustion dynamics of administered nutrients such as carbohydrates and lipids. Application to animals and microorganisms is also possible.

¹³CHO,¹³CFAT etc.

ドイツ・コールテックス社 肺運動負荷モニタリングシステム 携帯式呼気ガス代謝モニター メータマックス3B

- 従来の呼気ガス装置と同等以上の精度。
- 『580g』の軽量ボディ。 専用ハーネスにより簡単装着、激しい運動でも身体に密着。
- 高性能テレメトリー機能。
 ドライ / フラットの状態で最大『1000m』の無線送信可能。
- 運動負荷装置 / 負荷心電計との連携可能。

フランス・マナテック社

非侵襲 インピーダンス心拍出量計 フィジオフロー

■ 安静時~高強度運動負荷時の心拍出量を非侵襲/連続/リアルタイムにモニターが可能。

■ 簡便な操作性

- ・安静時の30拍のキャリブレーション測定後、すぐに測定開始。
- ・特殊な技術を必要とせず、高い再現性を実現。
- 経済性 6枚の市販ストレス用電極を使用。
- 他方法(スワンガンツ/フィック/エコードップラー等)と高い相関性。

〒113-0033 東京都文京区本郷 1-33-8 TEL 03 (3814) 1635 FAX 03 (3814) 7564 email : support@kykb.jp web : http://www.kykb.jp

^{≝ 账责者} 株式会社大塚製業工場 ^{账完提集} 大塚製薬株式会社 ■OS-Iに関するお問い合わせ先!(株)大塚製薬工場 お客様相談センター **亟0120-872-873** (親政上の注意) (親政上の注意) (第四、日前とは200-1000m((約) 予重-元人(陽齢者をむ)、500-1000m((約) 第一一人(陽齢者をむ)、500-1000m((約) 第一一人(陽齢者をむ)、500-1000m((約) 第一一人(職能)を引き) 30-500m((約) 8(8、ネーエスワビリーの時に適用する、 8(8、ネーエスワビリーの時に適用する、 8(8、ネーエスワビリーの時に適用する、 第一一人(第一) 8(8、ネーエスワビリーの時に高いてきから) 8(8、ネーエスワビリーの時に高いてきから) 8(8、ネーエスワビリーの時に高いてきから) (第一一人) 1(8 Otsuka đ 5って、多く欲用することによって原産患が治癒するものではありません 個別評価理解基用食品とは、特別用活食品のうちで特定の疾病のための食事療法上の服得できる効果の根拠が低学的、装着学的に出りたいと食品として消費者庁が許可した食品です。 オーエスワンゼリーは、そしゃく・えん下困難な場合にも用いることができますが、医師とご相談の上、ご使用下さい。 A COMPANY AND A ×-カー希望小売価格 190円(税抜) í, **05-1** オーエスワンPETボトル 経口補水液 無果汁 500ml 、偏保調と Otsuka 乳幼児から高齢者の軽度から 中等度までの脱水状態時にお勧めします。 内容量:500mL 内容量:280mL メーカー希望小売価格 133円(税抜) 体が知ってる大切な水と電解質 進した時者用食品です。 能免在難念、商品による下明-量む 発熱を伴う説が状態、酒能者の 経日脱脱不足による脱水状態。 過度の発汗による脱水状態等に オーエスワンPETボトル POINT3 POINT4 Construction to the second sec 無果汁 280m オーニスフンは、職業職と職業の配合パランスを考慮した協口職大派です。最終から中等部の設大状態の方の水、職業 再来勧縮に執手をついた当んで時間にあって。現代がお飲ん、意同になった下事。個生が数を中う認大状態。旅艇者の差 日期化かて思しる自分が後、過度の分斤による自分が参考に追ししいます。 타미원고 オーエスワンシリーズ \mathbf{H} Þ 検索 内容量:200g メーカー希望小売価格 190円(税抜) 消費者庁から許可された特別用途食品 個別評価型病者用食品です。 ▽痢・嘔吐・発熱、経口摂取不足、過度の 発汗による脱水状態等に適しています。 (オーエスワンゼリーが許可を受けた表示内容) オーエスワンゼリーは、電解質と聴質の配合パランスを考慮した 経口補水液 脱水状態に。 (オーエスワンが許可を受けた表示内容) オーエスワンゼリー 詳しい商品情報 OS-1 ゼリー タイプ POINT1 POINT2 displayed for real time monitoring, while simultaneously saving to memory for future download and analysis. Core Body Temperature Monitoring The CorTemp Data Recorder receives the signal from the CorTemp Core Body Temperature Pill Sensor. And it is converted the signal frequency into digital temperature data. This temperature data is displayed on the LCD screen with a resolution of 0.01 degree. The temperature is sampled at a user programmable interval and 22 It has been used widely in research areas such as physiology or medicine physical strendth. LCG of Med-Eng reduces the physical stress of heat in various environments by cooling water. Portable cooling unit that is proprietary, it does not interfere with the freedom of movement, even if you installed a lightweight / compact design. The LCG tube suit consists of a 3 pieces(hood and jacket and pants) by connecting the tube hose. which will provide approximately 110 hours of continuos recording at 10 second intervals. Battery power can last up to 336 hours(114 days), depending on the sampling interval programmed into this recorder. FAX:+81-47-401-5688 http://www.romixcs.jp TEL: +81-47-401-5680 On the other hand, you can circulate hot water by using a pump and constant temperature water tank. info@romixcs.jp It needs within 60cm between the recorder and pill sensor for readings. Please do not hesitate to contact us for assistance. WEIGHT (KG) This recorder operates on one standard 9-Volt alkaline battery, 50 - 68 70 - 84 85 - 100 95 - 113 Funabashi City, Chiba Pref. 273-0005 JAPAN HEIGHT (CM) 150 - 175 170 - 183 175 - 193 188 - 198 If you are interested in these products, 502 Kei-Wood Bldg,6-4-23 Hon-chou. The Pill Sensor size is 22.6mm x 10.7mm. WEIGHT (LBS) 110 - 150 154 - 185 187-220 210 - 250 ROMIX CS Co.Ltd. HEIGHT (FT) 4'11" - 5'9" 5'9" - 6'4" 5'7" - 6'0" 6'2" - 6'6"

CoreTemp

•

Medium-Small

Small

SIZE

Medium

arde

Thermetrics